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Abstract

We study class S for locally compact groups. We characterize locally compact groups in this class
as groups having an amenable action on a boundary that is small at infinity, generalizing a theorem of
Ozawa. Using this characterization, we provide new examples of groups in class S and prove a unique
prime factorization theorem for group von Neumann algebras of products of locally compact groups in
this class. We also prove that class S is a measure equivalence invariant.

1 Introduction
Class S for countable groups was introduced by Ozawa in [Oza06]. A countable group Γ is said to be in class
S if it is exact and it admits a map η : Γ→ Prob(Γ) satisfying

lim
k→∞

‖η(gkh)− g · η(k)‖ = 0

for all g, h ∈ Γ. Equivalently, class S can be characterized as the class of all groups that admit an amenable
action on a boundary that is small at infinity (see [Oza06, Theorem 4.1]). Groups in class S are also called
bi-exact.

Class S is used in, among others, [Oza04; Oza06; OP04; CS13; PV14; CI18; CdSS16] to prove rigidity
results for group von Neumann algebras of countable groups. In [Oza04], Ozawa proved that the group
von Neumann algebra L(Γ) is solid when Γ belongs to class S. This implies in particular that for Γ icc,
non-amenable and in class S, the group von Neumann algebra L(Γ) is prime, i.e. L(Γ) does not decompose as
a tensor product M1 ⊗M2 for non-type I factors M1 and M2.

In [OP04], Ozawa and Popa proved the first unique prime factorization results for von Neumann algebras
using groups in this class. Among other results, they showed that if Γ = Γ1 × · · · × Γn is a product of
non-amenable, icc groups in class S, then L(Γ) ∼= L(Γ1)⊗ · · · ⊗ L(Γn) remembers the number of factors n
and each factor L(Γi) up to amplification, i.e. if L(Γ) ∼= N1 ⊗ · · · ⊗Nm for some prime factors N1, . . . , Nm,
then n = m and (after relabeling) L(Γi) is stably isomorphic to Ni for i = 1, . . . , n. Subclasses of class S were
used in [CS13; PV14; HV13] to prove rigidity results on crossed product von Neumann algebras L∞(X) o Γ.

Examples of countable groups in class S are amenable groups, hyperbolic groups (see [Ada94]), lattices in
connected simple Lie groups of real rank one (see [Ska88, Proof of Théorème 4.4]), wreath products B o Γ with
B amenable and Γ in class S (see [Oza06]) and Z2 o SL2(Z) (see [Oza09]). Moreover, class S is closed under
measure equivalence (see [Sak09]). Examples of groups not belonging to class S are product groups Γ× Λ
with Γ non-amenable and Λ infinite, non-amenable inner amenable groups and non-amenable groups with
infinite centre.

In this paper, we study class S for locally compact groups. We provide a characterization of groups in this
class similar to [Oza06, Theorem 4.1], we provide new examples of groups in this class and we prove a unique
prime factorization result for group von Neumann algebras of locally compact groups. We also prove that
class S is a measure equivalence invariant.

Let G be a locally compact second countable (lcsc) group. We denote by Prob(G) the space of all Borel
probability measures, i.e. the state space of C0(G). The precise definition of class S for locally compact
groups is now as follows.
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Definition A. Let G be a lcsc group. We say that G is in class S (or bi-exact) if G is exact and if there
exists a ‖.‖-continuous map η : G→ Prob(G) satisfying

lim
k→∞

‖η(gkh)− g · η(k)‖ = 0 (1.1)

uniformly on compact sets for g, h ∈ G.

In [BDV18] this property without the exactness condition was called property (S). Note that the definition
was slightly different: the image of the map η above was in the space S(G) =

{
f ∈ L1(G)+

∣∣ ‖f‖1 = 1
}

instead of Prob(G). However, we prove in Proposition 3.1 that this is equivalent. It is also worthwhile to note
that it is currently unknown whether there are groups with property (S) that are not exact.

Examples of lcsc groups in class S include amenable groups, groups acting continuously and properly on a
tree or hyperbolic graph of uniformly bounded degree, and connected, simple Lie groups of real rank one with
finite centre. Proofs of these results can be found in [BDV18, Section 7]. It is easy to prove that groups not in
class S include product groups G×H with G non-amenable and H non-compact, non-amenable groups G
with non-compact centre and non-amenable groups G that are inner amenable at infinity, i.e. for which there
exists a conjugation invariant mean m on G such that m(E) = 0 for every compact set E ⊆ G.

Given a locally compact group G, we denote by Cub (G) the algebra of bounded uniformly continuous
functions on G, i.e. the bounded functions f : G→ C such that

‖λgf − f‖∞ → 0 and ‖ρgf − f‖∞ → 0

whenever g → e. Here, λ and ρ denote the left and right regular representations defined by (λgf)(h) = f(g−1h)
and (ρgf)(h) = f(hg) respectively. We define the compactification huG of the group G as the spectrum of
the following algebra

C(huG) ∼= {f ∈ Cub (G) | ρgf − f ∈ C0(G) for all g ∈ G}

and denote by νuG = huG \G its boundary. The compactification huG is equivariant in the sense that both
actions Gy G by left and right translation extend to continuous actions Gy huG. It is also small at infinity
in the sense that the extension of the action by right translation is trivial on the boundary νuG. It is moreover
the universal equivariant compactification that is small at infinity, in the sense that for every equivariant
compactification G that is small at infinity, the inclusion G ↪→ G extends to a continuous G-equivariant map
huG→ G.

The following locally compact version of [Oza06, Theorem 4.1], characterizes groups in class S as groups
acting amenably on the boundary νuG.

Theorem B. Let G be a lcsc group. Then, the following are equivalent

(i) G is in class S,

(ii) the action Gy νuG induced by left translation is topologically amenable,

(iii) the action Gy huG induced by left translation is topologically amenable,

(iv) the action G×Gy Cub (G)/C0(G) induced by left and right translation is topologically amenable.

The two novelties in the proof of this result are the proof of (iii) and the method we used to prove the
implication (iv)⇒(i). Indeed, the original proof of Ozawa for countable groups used that G belongs to class S if
and only if there is a u.c.p map θ : C∗r(G)⊗min C∗r(G)→ B(L2(G)) satisfying θ(x⊗ y)−λ(x)ρ(y) ∈ K(L2(G)),
where λ and ρ denote the representations of C∗r(G) induced by the left and right regular representation,
respectively. This is however no longer true for locally compact groups. Indeed, for all connected groups G,
the reduced C∗-algebra C∗r(G) is nuclear and hence a map θ as above always exists.

Denote by βluG the left-equivariant Stone-Čech compactification of G, i.e. the spectrum of the algebra
Club (G) of bounded left-uniformly continuous functions on G. The action Gy G by left-translation extends
uniquely to a continuous action Gy βluG. Moreover, βluG is the universal left-equivariant compactification of
G in the sense that every left-G-equivariant continuous map G→ X to any compact space X with continuous
action Gy X extends uniquely to a G-equivariant continuous map βluG→ X. We also prove the following
characterization of groups in class S.
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Theorem C. Let G be a lcsc group. Then, G belongs to class S if and only if G is exact and there exists a
Borel map η : G→ Prob(βluG) satisfying

lim
k→∞

‖η(gkh)− g · η(k)‖ = 0

uniformly on compact sets for g, h ∈ G.

In the proof of this theorem, we will see that it is precisely the exactness of G that allows us to construct
the required map η̃ : G→ Prob(G) from a map η : G→ Prob(βluG). This was implicitly observed before in
[BO08, Chapter 15] for countable groups.

Using Theorem B, we prove the following new examples of locally compact groups in class S. In [Cor17],
Cornulier introduced a notion of wreath products for locally compact groups. See (4.5) on page 12 for a
short recapitulation and the notation used in this article. The following result is a locally compact version of
[Oza06, Corollary 4.5].

Theorem D. Let B and H be lcsc groups, X a countable set with a continuous action H y X and A ⊆ B a
compact open subgroup. If B is amenable, all stabilizers StabH(x) for x ∈ X are amenable and H belongs to
class S, then also the wreath product B oAX H belongs to class S.

A notion of measure equivalence for locally compact groups was introduced by S. Deprez and Li in [DL14].
By [DL15, Corollary 2.9] and [DL14, Theorem 0.1 (6)] exactness is preserved under this notion of measure
equivalence. More recently, this notion was studied in more detail in [KKR17; KKR18]. It was proved that
two lcsc groups G and H are measure equivalent if and only if they admit essentially free, ergodic pmp actions
on some standard probability space for which the cross section equivalence relations are stably isomorphic.
Using this characterization, we were able to prove the following result. For countable groups this was proven
by Sako in [Sak09].

Theorem E. The class S is closed under measure equivalence.

As a consequence of this theorem, we have for instance that R2 o SL2(R) and R2 o SL2(Z) belong to class
S. Indeed, Z2 o SL2(Z) is a lattice in both R2 o SL2(R) and R2 o SL2(Z). Hence, the latter two are measure
equivalent to Z2 o SL2(Z), which belongs to class S by [Oza09].

In [BDV18], the author proved together with Brothier and Vaes that the group von Neumann algebra
L(G) is solid whenever G is a locally compact group in class S. In particular, if L(G) is also a non-amenable
factor, then L(G) is prime. Combining Theorem B with the unique prime factorization results of Houdayer
and Isono in [HI17] along with the generalization [AHHM18, Application 4] by Ando, Haagerup, Houdayer,
and Marrakchi, we were able to obtain the following unique prime factorization result for (tensor products of)
such group von Neumann algebras.

Theorem F. Let G = G1 × · · · ×Gm be a direct product of locally compact groups in class S whose group
von Neumann algebras L(Gi) are nonamenable factors. If

L(G) ∼= N1 ⊗ . . . ⊗ Nn
for some non-type I factors Ni, then n 6 m. Moreover, all factors Ni are prime if and only if n = m and in
that case (after relabeling) L(Gi) is stably isomorphic to Ni for i = 1, . . . , n.

We prove this theorem by proving that for groups G in class S, the group von Neumann algebra L(G)
belongs to the class C(AO) introduced in [HI17].

It is worthwhile to note that for many locally compact groups G, the group von Neumann algebra L(G) is
amenable or even type I. For instance, the group von Neumann algebra of a connected lcsc group is always
amenable by [Con76, Corollary 6.9]. However, the following group G due to Suzuki provides an example of a
locally compact group whose group von Neumann algebra L(G) is a non-amenable type II∞ factor.

Example G (Suzuki). Let Z2 = Z/2Z act on F2 by flipping the generators. Then the compact group
K =

∏
k∈N Z2 acts on the infinite free product H = ∗k∈N F2 by letting the kth component of K flip the

generators in the kth component of H. The semi-direct product G = H o K satisfies the conditions of
[Suz16, Proposition] with Kn =

∏∞
k=n+1 Z2 and Ln = (∗nk=0 F2) oK. Hence, by [Suz16, section on group

von Neumann algebras], its group von Neumann algebra is a non-amenable factor of type II∞. Moreover, G
belongs to class S since the cocompact subgroup H does (see [BDV18, Lemma 7.2]).
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Furthermore, certain classes of groups acting on trees have non-amenable group von Neumann algebras by
[HR19, Theorem C and D]. Also, [Rau19b, Theorem E and F] would provide conditions on such a group G
under which L(G) would be a non-amenable factor. In particular, for every q ∈ Q with 0 < q < 1 [Rau19b,
Theorem G] would provide examples of groups in class S for which the group von Neumann algebra would be
a non-amenable factor of type IIIq. However, due to a mistake in [Rau19b, Lemma 5.1], there is a gap in the
proofs of these results (see also [Rau19a, p 20]), and it is currently not completely clear whether these results
hold as stated there.

2 Preliminaries and notation
Throughout this article, we assume all groups to be locally compact and second countable. We denote by
λG the left Haar measure on such a group G. All topological spaces are assumed to be locally compact and
Hausdorff. All actions Gy X are assumed to be continuous.

Let X be a locally compact space. We denote by M(X) the space of complex Radon measures on X. We
equip this space with the norm of total variation, or with the weak* topology when viewing it as the dual
space of C0(X). The Borel structure from both topologies agree. We denote by M(X)+ the space of positive
Radon measures and Prob(G) the space of Radon probability measures. If a group G acts on X, then for
g ∈ G and µ ∈ M(X) we denote by g · µ the measure defined by (g · µ)(E) = µ(g−1E) for all Borel sets
E ⊆ X.

2.1 Topological amenability
We recall from [Ana02] the notion of topological amenability for actions of locally compact groups.

Definition 2.1. Let G be a lcsc group, X a locally compact space and Gy X a continuous action. We say
that Gy X is (topologically) amenable if there exists a net of weakly* continuous maps µi : X → Prob(G)
satisfying

lim
i
‖g · µi(x)− µi(gx)‖ = 0 (2.1)

uniformly on compact sets for x ∈ X and g ∈ G.

By [Ana02, Proposition 2.2], we have the following equivalent characterization.

Proposition 2.2. Let G be a lcsc group, X a locally compact space and Gy X a continuous action. Then,
the following are equivalent

(i) Gy X is amenable

(ii) There exists a net (fi)i in Cc(X ×G)+ satisfying limi

∫
G
fi(x, s) ds = 1 uniformly on compact

sets for x ∈ X and

lim
i

∫
G

|fi(x, g−1s)− fi(gx, s)|ds = 0 (2.2)

uniformly on compact sets for x ∈ X and g ∈ G.

Remark 2.3. Obviously, when X is σ-compact, we can replace nets by sequences in the above definition and
proposition.
Remark 2.4. If X is compact, then we can take a sequence (fn)n in Cc(X ×G)+ satisfying (2.2) and such
that

∫
G
fn(x, s) ds = 1 for every x ∈ X and every n ∈ N.

The following result shows that if X is a σ-compact space, then one can assume that the convergence in
(2.1) is uniform on the whole space X, instead of only uniform on compact sets of X.

Proposition 2.5. Let G be a lcsc group, X a σ-compact space and Gy X a continuous action. The action
G y X is amenable if and only if there exists a sequence of weakly* continuous maps µn : X → Prob(G)
satisfying

lim
n→∞

‖g · µn(x)− µn(gx)‖ = 0

uniformly for x ∈ X and uniformly on compact sets for g ∈ G.
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Proof. Suppose that Gy X is amenable. Take an arbitrary compact set K ⊆ G and an ε > 0. It suffices to
construct a weakly* continuous map µ : X → Prob(G) satisfying

‖g · µ(x)− µ(gx)‖ < ε (2.3)

for all g ∈ K and all x ∈ X.
Without loss of generality, we can assume that K is symmetric. Take an increasing sequence (Ln)n>1

of compact subsets in X such that X =
⋃
n Ln. After inductively enlarging Ln, we can assume that

Ln ⊆ int(Ln+1) and gLn ⊆ Ln+1 for every g ∈ K. Using the amenability of Gy X, we can take a sequence of
weakly* continuous maps νn : X → Prob(G) satisfying ‖g · νn(x)− νn(gx)‖ < 2−n for all g ∈ K, x ∈ Ln and
n ∈ N\{0}. Set Ln = ∅ for n 6 0. Fix n > 1 such that 14/n < ε and take continuous functions fk : X → [0, 1]
such that fk(x) = 1 whenever x ∈ Lk \ Lk−n and fk(x) = 0 whenever x ∈ Lk−n−1 or x ∈ X \ Lk+1.

For every x ∈ X, we denote |x| = max {k ∈ N | x /∈ Lk}. We set

µ̃(x) =

∞∑
k=0

fk(x)νk(x) = f|x|(x)ν|x|(x) + f|x|+n+1(x)ν|x|+n+1(x) +

|x|+n∑
k=|x|+1

νk(x).

for x ∈ X and define µ : X → Prob(G) : x 7→ µ̃(x)/ ‖µ̃(x)‖. Clearly, µ is weakly* continuous. To prove
that µ satisfies (2.3), fix x ∈ X and g ∈ K. Since gLk ⊆ Lk+1 and g−1Lk ⊆ Lk+1 for every k ∈ N, we have
|x| − 1 6 |gx| 6 |x|+ 1 and hence

‖g · µ̃(x)− µ̃(gx)‖ 6 6 +

|x|+n∑
k=|x|+1

‖g · νk(x)− νk(gx)‖ 6 7,

where we used that g ∈ K and x ∈ Lk for k = |x|+ 1, . . . , |x|+ n. Hence,

‖g · µ(x)− µ(gx)‖ 6 2

‖µ̃(x)‖
‖g · µ̃(x)− µ̃(gx)‖ 6 14

n
< ε

as was required.

The following result can for instance be found in [BO08, Exercise 15.2.1] for discrete groups. The proof for
locally compact groups is exactly the same.

Lemma 2.6. Let G be a lcsc group, X a locally compact space and G y X a continuous action. Then,
Gy X is amenable if and only if the induced action Gy Prob(X) is amenable, where Prob(X) is equipped
with the weak* topology.

2.2 Exactness
The following definition of exactness was given by Kirchberg and Wassermann in [KW99a]. Recall that a
G-C∗-algebra is a C∗-algebra A together with a ‖.‖-continuous action Gy A by ∗-isomorphisms. We denote
by Aor G the reduced crossed product.

Definition 2.7. A lcsc group G is called exact if for every G-equivariant exact sequence of G-C*-algebras

0→ A→ B → C → 0,

the induced sequence
0→ Aor G→ B or G→ C or G→ 0

is exact.

It is an immediate consequence of this definition that the reduced group C∗-algebra C∗r(G) is exact
whenever G is exact. The converse is also true for discrete groups (see [KW99a, Theorem 5.2]), but is still
open for locally compact groups. The class of exact groups is very large and contains among others all
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(weakly) amenable groups [HK94; BCL17], linear groups [GHW05] and hyperbolic groups [Ada94]. Examples
of non-exact groups were given by Gromov [Gro03; AD08] and Osajda [Osa14].

As before, we denote by βluG the spectrum of the algebra Club (G) of bounded left-uniformly continuous
functions on G. By [Ana02, Theorem 7.2] and [BCL17, Theorem A] we have that a group G is exact if and
only if G admits an amenable action on some compact space, or equivalently if the action Gy βluG induced
by left translation is amenable.

3 Class S and boundary actions small at infinity
The main goal of this section is to prove Theorems B and C, but we first need the following equivalent
characterizations of the existence of a map satisfying (1.1). Note that point (i) in the proposition below is
property (S) in the sense of [BDV18].

As before, we denote by S(G) the space
{
f ∈ L1(G)+

∣∣ ‖f‖1 = 1
}
of probability measures on G that are

absolutely continuous with respect to the Haar measure. There is an obvious G-equivariant norm-preserving
embedding S(G) ↪→ Prob(G).

Proposition 3.1. Let G be a lcsc group. Then, the following are equivalent.

(i) There is a ‖.‖1-continuous map η : G→ S(G) satisfying

lim
k→∞

‖η(gkh)− g · η(k)‖1 = 0

uniformly on compact sets for g, h ∈ G.

(ii) There exists a ‖.‖-continuous map η : G→ Prob(G) satisfying

lim
k→∞

‖η(gkh)− g · η(k)‖ = 0

uniformly on compact sets for g, h ∈ G.

(iii) There exists a sequence of Borel maps ηn : G→M(G)+ satisfying

lim inf
n→∞

lim inf
k→∞

‖ηn(k)‖ > 0

and
lim
n→∞

lim sup
k→∞

sup
g,h∈K

‖ηn(gkh)− g · ηn(k)‖ = 0

for all compact sets K ⊆ G.

Proof. The implications (i)⇒(ii)⇒(iii) are trivial. We prove the reverse implications (iii)⇒(ii)⇒(i).
First, we prove (ii)⇒(i). The proof follows the lines of [Ana02, Proposition 2.2]. Let η : G→ Prob(G) be

as in (ii). We construct η̃ : G→ S(G) as follows. Take an f ∈ Cc(G)+ with
∫
G
f(t) dt = 1. Define

η̃(g)(s) =

∫
G

f(t−1s) dη(g)(t)

for s, g ∈ G. A similar calculation as in [Ana02, Proposition 2.2] checks that η̃(g) ∈ S(G) for every g ∈ G,
that η̃ is ‖.‖1-continuous and that ‖η̃(gkh)− g · η̃(k)‖1 → 0 uniformly on compact sets for g, h ∈ G whenever
k →∞.

The implication (iii)⇒(ii) follows from the technical lemmas 3.2 and 3.4 below applied on the spaces
X = Y = H = G with the actions G × G y X and G y Y by (g, k) · x = gxk−1 and (g, h) · y = gy for
g, k ∈ G, x ∈ X and y ∈ Y .

The following is a more abstract and slightly more general version of the trick in [BO08, Exercise 15.1.1].
It will be used several times in this article.
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Lemma 3.2. Let X and Y be σ-compact spaces and G a lcsc group. Suppose that Gy X and Gy Y are
continuous actions. If there exists a sequence of Borel maps ηn : X →M(Y )+ satisfying

lim
n→∞

lim sup
x→∞

sup
g∈K
‖ηn(gx)− g · ηn(x)‖ = 0 (3.1)

for all compact sets K ⊆ G and
lim inf
n→∞

lim inf
x→∞

‖ηn(x)‖ > 0.

Then, there exists a Borel map η : X → Prob(Y ) such that

lim
x→∞

‖η(gx)− g · η(x)‖ = 0 (3.2)

uniformly on compact sets for g ∈ G. Moreover, if the maps ηn are assumed to be ‖.‖-continuous, then also η
can be assumed to be ‖.‖-continuous. If the maps ηn are weakly* continuous and the maps x 7→ ‖ηn(x)‖ are
continuous for every n ∈ N, then also η can be assume to be weakly* continuous.

Proof. After passing to a subsequence and replacing values of ηn on compact sets, we can assume that there
exists a δ > 0 such that ‖ηn(x)‖ > δ for all n ∈ N and all x ∈ X. Set η̃n(x) = ηn(x)/ ‖ηn(x)‖ for all x ∈ X.
Note that (η̃n)n still satisfies (3.1) for all compact sets K ⊆ G. Moreover, the maps η̃n are ‖.‖-continuous
whenever ηn is ‖.‖-continuous. If the maps ηn are weakly* continuous and the maps x 7→ ‖ηn(x)‖ are
continuous, then also the maps η̃n are weakly* continuous.

Take an increasing sequence (Kn)n of compact symmetric neighbourhoods of the unit e in G such that
G =

⋃
n int(Kn). After passing to a subsequence of (η̃n)n, we find compact sets Ln ⊆ X such that

‖η̃n(gx)− g · η̃n(x)‖ 6 2−n+1

for all g ∈ Kn and x ∈ X \ Ln. After inductively enlarging Ln, we can assume that the sequence (Ln)n is
increasing, that Ln ⊆ int(Ln+1), that gLn ⊆ Ln+1 for all g ∈ Kn and that X =

⋃
n Ln. Moreover, we can

also assume that L0 = ∅.
For every x ∈ X, we denote |x| = max {n ∈ N | x /∈ Ln}. Furthermore, we denote h(n) = bn/2c+ 1. For

all n > 1, we take a continuous function fn : X → [0, 1] such that fn(x) = 1 if x ∈ L2n \ Ln and fn(x) = 0 if
x ∈ Ln−1 or x ∈ X \ L2n+1. Take f0 : X → [0, 1] such that f0(x) = 1 if x ∈ L1 and f0(x) = 0 if x ∈ X \ L2.
For x ∈ X, we set

µ(x) =

+∞∑
k=0

fk(x)η̃k(x)

= fh(|x|)−1(x) η̃h(|x|)−1(x) + f|x|+1(x) η̃|x|+1(x) +

|x|∑
k=h(|x|)

η̃k(x).

Now, define η : X → Prob(Y ) by η(x) = µ(x)/ ‖µ(x)‖. Note that η is ‖.‖-continuous (resp. weakly*
continuous) whenever the maps η̃n are.

To prove that η satisfies (3.2), take an ε > 0 and a compact subset K ⊆ G. Take n0 > 1 such that
K ⊆ Kn0

and take n1 > max{2n0, 32/ε}. We claim that ‖η(g · x)− g · η(x)‖ < ε whenever x ∈ G \ Ln1
and

g ∈ K. Indeed, fix g ∈ K and x ∈ G \ Ln1
. Take n = |x|. Since gLn+1 ⊆ Ln+2 and g−1Ln−1 ⊆ Ln, we have

that n− 1 6 |gx| 6 n+ 1. Hence,

‖µ(gx)− g · µ(x)‖ 6 6 +

n∑
k=h(n)

‖η̃k(gx)− g · η̃k(x)‖ 6 8,

since g ∈ Kk and x ∈ X \ Lk for k = h(n), . . . , n. We conclude that

‖η(gx)− g · η(x)‖ 6 2

‖µ(x)‖
‖µ(gx)− g · µ(x)‖ 6 4

n
· 8 < ε

which proves the claim.
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Remark 3.3. Using almost exactly the same proof as above, one can actually prove the following slightly more
general result: suppose that for every ε > 0 and every compact set K ⊆ G, there exists a compact set L ⊆ X
such that for all compact sets L′ ⊆ X, there exists a map η′ : X →M(Y )+ such that

‖η′(gx)− g · η′(x)‖
‖η′(x)‖

< ε (3.3)

whenever g ∈ K and x ∈ L′ \ L. Then, there exists a map η : X → Prob(Y ) as in (3.2). Indeed, using the
notation of the proof, we can take the compact sets Ln ⊆ X and the maps ηn : X → M(Y )+ such that
‖η̃n(gx)− g · η̃n(x)‖ < 2−n+1 for all g ∈ Kn and x ∈ L2n \Ln, where again η̃n(x) = ηn(x)/ ‖ηn(x)‖. The rest
of the proof holds verbatim.

The following lemma will be used several times to replace Borel maps by continuous maps.

Lemma 3.4. Let H and G be lcsc groups and Y a locally compact space. Suppose that Gyα H and Gy Y
are arbitrary continuous actions. If there exists a Borel map η : H → Prob(Y ) satisfying

lim
h→∞

∥∥η(αg(h)
)
− g · η(h)

∥∥ = 0 and lim
h→∞

∥∥η(αg(h)k
)
− η
(
αg(hk)

)∥∥ = 0

uniformly on compact sets for g ∈ G and k ∈ H, then there exists a ‖.‖-continuous map η̃ : H → Prob(Y )
map satisfying

lim
h→∞

∥∥η̃(αg(h)
)
− g · η̃(h)

∥∥ = 0

uniformly on compact sets for g ∈ G.

Proof. Fix a compact neighbourhood K of the unit e in H with λH(K) = 1. We define η̃ : H → Prob(Y ) by

η̃(g) =

∫
K

η(gk) dk.

One check that the map η̃ satisfies the conclusions of the lemma.

We are now ready to prove Theorem B.

Proof of Theorem B. First, we prove (i)⇒(ii). Let η : G→ Prob(G) be a map as in the definition of class S.
Consider the u.c.p. map η∗ : Club (G)→ C(huG) defined by

(η∗f)(g) =

∫
G

f(s) dη(g)(s)

for f ∈ Club (G) and g ∈ G. A straightforward calculation checks that indeed η∗(f) ∈ C(huG) ⊆ Cub (G) for every
f ∈ Club (G). Moreover, η∗(λgf)−λg(η∗f) ∈ C0(G) for all f ∈ Club (G). Hence, composing with the quotient map
π : C(huG)→ C(νuG) ∼= C(huG)/C0(G) yields a G-equivariant u.c.p. map π ◦ η∗ : Club (G)→ C(νuG). By
dualization, we obtain a weakly* continuous G-equivariant map νuG→ Prob(βluG) given by x 7→ δx ◦ π ◦ η∗.
Since G is exact, the action G y βluG is amenable and hence so is G y Prob(βluG) (see Lemma 2.6).
Composing with the G-equivariant map νuG→ Prob(βluG) above, yields that Gy νuG is amenable.

Now, we prove (ii)⇔(iii). The implication from right to left is trivial. To prove the other implication, take
an arbitrary compact subset K ⊆ G and an ε > 0. By Proposition 2.2, it suffices to construct a function
h ∈ Cc(huG×G)+ such that

∫
G
h(x, s) ds = 1 for every x ∈ huG and∫

G

|h(x, g−1s)− h(gx, s)|ds < ε (3.4)

for all x ∈ huG and g ∈ K.
By Proposition 2.2 and Remark 2.4, we find a function f ∈ Cc(νuG × G)+ with

∫
G
f(x, s) ds = 1 such

that
∫
G
|f(x, g−1s) − f(gx, s)|ds < ε/2 for all x ∈ νuG and g ∈ K. By the Tietze Extension Theorem, we

can extend f to an f̃ ∈ Cc(huG×G)+. Since

lim sup
i

∫
G

|f̃(xi, g
−1s)− f̃(gxi, s)|ds 6 sup

x∈νuG
sup
g∈K

∫
G

|f(x, g−1s)− f(gx, s)|ds < ε

2
,
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for every net (xi)i in G converging to an x ∈ νuG, we can take a compact set L ⊆ G such that∫
G

|f̃(x, g−1s)− f̃(gx, s)|ds < ε

2
.

for all x ∈ huG \ L and g ∈ K. After possibly enlarging L and renormalizing f̃ , we can moreover assume that∫
G
f̃(x, s) ds = 1.
Fix a function a ∈ Cc(G)+ with

∫
G
a(s) ds = 1. Using Lemma 3.5 below, we can take a function ζ ∈ Cc(G)+

such that ζ|L = 1 and |ζ(gh)− ζ(h)| < ε/4 for h ∈ G and g ∈ K. Now, define h ∈ Cc(huG×G) by

h(x, s) =

{
ζ(x)a(x−1s) +

(
1− ζ(x)

)
f̃(x, s) if x ∈ G,

f̃(x, s) if x ∈ νuG.

A straightforward calculation shows that h satisfies (3.4).
Next, we prove (ii)⇒(iv) Denote by X the spectrum of A = Cub (G)/C0(G). Since C(huG) ⊆ Cub (G), we

have a natural embedding C(νuG) ↪→ A, which in turn induces a continuous map ϕ` : X → νuG. Note that
ϕ` is G×G-equivariant with respect to the actions induced by left and right translation. Similarly, we get a
G×G-equivariant map ϕr : X → νurG, where νurG denotes the spectrum of the algebra

C(νurG) = {f ∈ Cub (G) | λgf − f ∈ C0(G)}

and the action G×Gy νurG is induced by left and right translation. By assumption, the action G×1 y νuG
is amenable, and by symmetry so is 1×Gy νurG. Hence, the diagonal action G×Gy νuG× νurG is also
amenable. Now, the conclusion follows from the G×G-equivariance of the map ϕ` × ϕr : X → νuG× νurG.

Finally, we prove (iv)⇒(i). By [Ana02, Theorem 7.2], the group G is exact. Denote again by X the
spectrum of A = Cub (G)/C0(G). Denoting by βuG the spectrum of Cub (G), we get X = βuG \ G. By
Proposition 2.2 and Remark 2.4, we can take a sequence (fn)n of functions in Cc(X ×G ×G)+ such that∫
G×G fn(x, s, t) dsdt = 1 for all x ∈ X and n ∈ N, and such that

lim
n→∞

∫
G×G

|fn(x, g−1s, h−1t)− fn
(
(g, h) · x, s, t

)
|dsdt = 0 (3.5)

uniformly for x ∈ X and uniformly on compact sets for g, h ∈ G. As before, the Tietze Extension Theorem
yields extensions f̃n ∈ Cc(βuG×G×G)+ of each fn. For each x ∈ βuG and n ∈ N, we define ηn(x) ∈M(G)+

as the measure with density function s 7→
∫
G
f̃n(x, s, t) dt with respect to the Haar measure on G. This yields

‖.‖-continuous maps ηn : βuG→M(G)+. By (3.5), the restrictions of ηn to G ⊆ βuG satisfy the conditions
of Proposition 3.1 (iii).

In the proof above, we used the following easy lemma.

Lemma 3.5. Let G be a lcsc group. For all compact subsets K,L ⊆ G and all ε > 0, there exists a continuous
function f ∈ Cc(G) satisfying f |L = 1 and

|f(kgk′)− f(g)| < ε

for k, k′ ∈ K and g ∈ G.

Proof. We can assume that K is symmetric and that e ∈ int(K). Take continuous functions fn : G→ [0, 1]
such that fn(g) = 1 for g ∈ KnLKn and supp fn ⊆ Kn+1LKn+1. Take N ∈ N such that 1/N < ε/4 and set
f = 1

N

∑N−1
k=0 fn.

We end this section by proving Theorem C.

Proof of Theorem C. The implication from left to right is trivial. To prove the converse implication, note
that by exactness of G and Lemma 2.6, the action G y Prob(βluG) is amenable. Take a sequence θn :
Prob(βluG)→ Prob(G) such that

lim
n→∞

‖θn(g · µ)− g · θn(µ)‖ = 0
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uniformly for µ ∈ Prob(βluG) and uniformly on compact sets for g ∈ G. Now, for the composition ηn = θn ◦ η
we get

‖ηn(gkh)− g · ηn(k)‖ 6 ‖η(gkh)− g · η(k)‖+
∥∥θn(g · η(k)

)
− g · θn

(
η(k)

)∥∥
6 ‖η(gkh)− g · η(k)‖+ sup

µ∈Prob(βluG)

∥∥θn(g · µ)− g · θn
(
µ
)∥∥

whenever g, h, k ∈ G. It follows that (ηn)n satisfies the conditions of Proposition 3.1 (iii).

4 Locally compact wreath products in class S
In this section, we prove Theorem D. Before we start the proof of this result, we need a few preliminary
results. The first is a locally compact version of [BO08, Lemma 15.2.6]. This result can be proven in a similar
way as in [BO08, Lemma 15.2.6]. However, we provide a different proof, not requiring exactness.

Proposition 4.1. Let G be an lcsc group and K a closed, amenable subgroup. If there exists a Borel map
η : G→ Prob(G/K) such that

lim
k→∞

‖η(gkh)− g · η(k)‖ = 0

uniformly on compact sets for g, h ∈ G. Then, G has property (S), i.e. there exists a ‖.‖-continuous map
η̃ : G→ Prob(G) satisfying (1.1).

Proof. Using Lemma 3.4, we can assume that η is ‖.‖-continuous. The proof then follows easily from Lemma 4.3
below.

Let G be a group and H ⊆ G a closed subgroup. Denote by p : G → G/H the quotient map. Let
σ : G/H → G be a locally bounded Borel cross section for p, i.e. a Borel map satisfying p ◦ σ = IdG/H that
maps compact sets onto precompact sets (see [Mac52, Lemma 1.1]). We identify G with G/H ×H via the
map

φ : G→ G/H ×H : g 7→
(
gH, σ(gH)−1g

)
. (4.1)

Under this identification the action by left translation is given by k · (gH, h) =
(
kgH, ω(k, gH)h

)
, where

ω(k, gH) = σ(kgH)−1kσ(gH).
The identification map φ is not continuous, but it is bi-measurable and maps (pre)compact sets to

precompact sets. This allows us to identify the spaces Prob(G) and Prob(G/H ×H) via the map µ 7→ φ∗µ.
Note that this identification map is continuous with respect to the norm topology on both spaces, but not
with respect to the weak* topology on both spaces. We use the above identifications in the following two
lemmas.

Lemma 4.2. Let G be a lcsc group and H ⊆ G a closed, amenable subgroup. Let (νn)n be a sequence in
Prob(H) such that ‖h · νn − νn‖ → 0 uniformly on compact sets for h ∈ H whenever n→∞. Then,

lim
n→∞

‖h · (µ⊗ νn)− (h · µ)⊗ νn‖ = 0

uniformly on compact sets for g ∈ G and uniformly on weakly* compact sets for µ ∈ Prob(G/H).

Proof. Fix compact subsets K ⊆ G and L ⊆ Prob(G/H), and take ε > 0. A straightforward calculation yields

‖k · (µ⊗ νn)− (k · µ)⊗ νn‖ 6
∫
G/H

‖ω(k, gH) · νn − νn‖ dµ(gH)

for all µ ∈ Prob(G/H), all k ∈ G and all n ∈ N. Take a compact set L ⊆ G/H such that µ(L) > 1− ε for all
µ ∈ L. Since ω maps compact sets to precompact sets, we find an n0 ∈ N such that ‖ω(k, gH) · νn − νn‖ < ε
for all n > n0, all k ∈ K and all gH ∈ L. Then, ‖k · (µ⊗ νn)− (k · µ)⊗ νn‖ 6 3ε for n > n0, k ∈ K and
µ ∈ L, thus proving the result.
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Lemma 4.3. Let G and H be lcsc groups, π : G → H a continuous morphism and K ⊆ H a closed,
amenable subgroup. Let Gy X be a continuous action on some σ-compact space X. Let Gy Prob(H) (resp.
Gy Prob(H/K) ) be defined by g ·µ = π(g) ·µ for g ∈ G and µ ∈ Prob(H) (resp. µ ∈ Prob(H/K) ). If there
exists a weakly* continuous map η : X → Prob(H/K) such that

lim
x→∞

‖η(gx)− g · η(x)‖ = 0

uniformly on compact sets for g ∈ G. Then, there exists a Borel map η̃ : X → Prob(H) such that

lim
x→∞

‖η̃(gx)− g · η̃(x)‖ = 0

uniformly on compact sets for g ∈ G. Moreover, if η is assumed to be ‖.‖-continuous then η̃ can also be
assumed to be ‖.‖-continuous.

Proof. Fix a locally bounded Borel cross section σ : H/K → H for the quotient map p : H → H/K, and
identify H with H/K ×K and Prob(H) with Prob(H/K ×K) as in (4.1).

Take a sequence (νn)n in Prob(K) such that ‖k · νn − νn‖ → 0 uniformly on compact sets for k ∈ K
whenever n → ∞. Using Lemma 4.2, we construct maps as in Remark 3.3 as follows. Fix an ε > 0 and a
compact C ⊆ G. Take a compact L ⊆ X such that ‖η(gx)− g · η(x)‖ < ε for all g ∈ C and x ∈ X \ L. Fix
any compact set L′ ⊆ X. Applying Lemma 4.2 to the weak* compact set η(L′), we find an n ∈ N such that∥∥(g · η(x)

)
⊗ νn − g ·

(
η(x)⊗ νn

)∥∥ < ε for any x ∈ L′ and g ∈ C. Hence,
∥∥η(gx)⊗ νn − g ·

(
η(x)⊗ νn

)∥∥ 6 2ε
for any g ∈ C and any x ∈ L′ \L. We conclude that the map η′ : X → Prob(H) defined by η′(x) = η(x)⊗ νn
is as in (3.3). Moreover, if η is ‖.‖-continuous, then so is µ.

The second result that we need before proving Theorem D characterizes when a semi-direct product
belongs to class S. By definition G = B o H belongs to class S whenever it is exact and there exists a
map η : G→ Prob(G) satisfying

∥∥µ((a, k)(b, h)(a′, k′)
)
− (a, k) · µ(b, h)

∥∥→ 0 uniformly on compact sets for
(a, k), (a′, k′) ∈ G whenever (b, h) → ∞. The result below shows that is suffices that there exist two such
maps one of which satisfies the convergence above when b→∞ and the other when h→∞.

Proposition 4.4. Let G = BoαH be a semi-direct product of lcsc groups. Then, G is in class S if and only
if B and H are exact, and there exists Borel maps µ : G→ Prob(G) and ν : G→ Prob(G) such that

lim
b→∞

∥∥µ((a, k)(b, h)(a′, k′)
)
− (a, k) · µ(b, h)

∥∥ = 0 (4.2)

uniformly on compact sets for a, a′ ∈ B and k, h, k′ ∈ H, and such that

lim
h→∞

∥∥ν((a, k)(b, h)(a′, k′)
)
− (a, k) · ν(b, k)

∥∥ (4.3)

uniformly for b ∈ B and uniformly on compact sets for a, a′ ∈ B and k, k′ ∈ H.

Proof. The only if part is immediate. To prove the converse, note first that G is exact as an extension of an
exact group by an exact group (see [KW99b, Theorem 5.1]). Fix a compact set K ⊆ G and an ε > 0. By
Proposition 3.1 (iii), it suffices to find a Borel map η : G→ Prob(G) and a compact set L ⊆ G such that∥∥η((a, k)(b, h)(a′, k′)

)
− (a, k) · η(b, h)

∥∥ < ε (4.4)

for all (a, k), (a′, k′) ∈ K and all (b, h) ∈ G \ L.
Since K is compact, we can take compact subsets KB ⊆ B and KH ⊆ H such that

K ⊆ {(b, h) | b ∈ KB , h ∈ KH} .

By assumption, we can take a compact set L̃H ⊆ H such that
∥∥ν((a, k)(b, h)(a′, k′)

)
− (a, k) · ν(b, k)

∥∥ < ε/2

whenever a, a′ ∈ KB , b ∈ B, k, k′ ∈ KH and h ∈ H \ L̃H .
Using Lemma 3.5, we take a function f ∈ Cc(H) such that f(h) = 1 for h ∈ L̃H and |f(khk′) −

f(h)| < ε/4 whenever h ∈ H and k, k′ ∈ KH . Set LH = supp f . Take a compact set LB ⊆ B such that∥∥µ((a, k)(b, h)(a′, k′)
)
− (a, k) · µ(b, h)

∥∥ < ε/2 whenever a, a′ ∈ KB , b ∈ G \ LB , k, k′ ∈ KH and h ∈ LH .
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Now, define η : G→ Prob(G) by

η(b, h) = f(h)µ(b, h) +
(
1− f(h)

)
ν(b, h)

for (b, h) ∈ G. Set L = {(b, h) ∈ G | b ∈ LB , h ∈ LH}. Fix (a, k), (a′, k′) ∈ K and (b, k) ∈ G \ L. Denote
g = (b, h), g′ = (a, k)(b, h)(a′, k′) and g′′ = (a, k). We have

‖η(g′)− g′′ · η(g)‖ 6 f(h)
∥∥µ(g′)− g′′ · µ(g)

∥∥+
(
1− f(h)

) ∥∥ν(g′)− g′′ · ν(g)
∥∥+

ε

2

We are in one of the following three cases: either h ∈ H \ LH , or h ∈ LH \ L̃H and b ∈ B \ LB, or h ∈ L̃H
and b ∈ B \ LB . In all three cases (4.4) holds.

Remark 4.5. Note that (4.2) is equivalent with the existence of a map µ̃ : B → Prob(G) satisfying

lim
b→∞

‖µ̃(aba′)− a · µ̃(b)‖ = 0 and lim
b→∞

∥∥µ̃(αh(b)
)
− h · µ̃(b)

∥∥ = 0

uniformly on compact sets for a, a′ ∈ B and h ∈ H. Indeed, the restriction of a map as in (4.2) satisfies the
above equations. Conversely, given a map µ̃ as above, the map µ : G→ Prob(G) defined by µ(b, h) = µ̃(b)
satisfies (4.2).

When the group B is amenable, the previous result specializes to the corollary below. In the setting of
countable groups, this result was proved by Ozawa in [Oza06, proof of Corollary 4.5] and [Oza09, Section 3].
However, the proof provided there does not carry over to the locally compact setting, since, as we explained in
the introduction, the characterization of class S in terms of a u.c.p. map ϕ : C∗r(G)⊗min C∗r(G)→ B(L2(G))
satisfying ϕ(x⊗ y)−λ(x)ρ(y) ∈ K(L2(G)) (see [BO08, Proposition 15.1.4]) does not hold in this setting. Also
the method used in [BO08, Section 15.2] can not be applied, since for a locally compact group G the crossed
product C(X) or G can be nuclear while Gy X is not amenable.

Corollary 4.6. Let G = B oα H be a semi-direct product of lcsc groups with B amenable. Then G is in
class S if and only if H is in class S and there is a Borel map µ : B → Prob(H) such that

lim
b→∞

∥∥µ(αh(b)
)
− h · µ(b)

∥∥ = 0 and lim
b→∞

‖µ(aba′)− µ(b)‖ = 0

uniformly on compact sets for h ∈ H and a, a′ ∈ B.

Proof. The only if part is clear. Conversely, let µ : B → Prob(H) be a map as above. Applying Lemmas 3.4
and 4.3 yields a map µ̃ : B → Prob(G) as in Remark 4.5. Applying Lemma 4.3 to the map η : H → Prob(H)
from the definition of class S and composing it with the projection (b, h) 7→ h yields a map satisfying (4.3).

We are now ready to prove Theorem D. The suitable notion of wreath products for locally compact groups
was introduced by Cornulier in [Cor17]. Let B and H be lcsc groups, X a countable set with continuous
action H y X and A ⊆ B a compact open subgroup. The semi-restricted power BX,A is defined by

BX,A =
{

(bx)x∈X ∈ BX
∣∣ bx ∈ A for all but finitely many x ∈ X

}
.

It is a lcsc space when equipped with the topology generated by the open sets
∏
x∈X Cx where Cx ⊆ B is

open for every x ∈ X and Cx = A for all but finitely many x ∈ X. For b ∈ BX,A, we denote suppA b =
{x ∈ X | b(x) /∈ A}.

Denote by α the action of H on BX,A by translation, i.e. αh(b)(x) = b(h−1x) for b ∈ BX,A, h ∈ H and
x ∈ X. It is easy to see that this action is continuous. The (semi-restricted) wreath product B oAX H is now
defined as

B oAX H = BX,A oα H (4.5)

equipped with the product topology. By [Cor17, Proposition 2.4] it is a lcsc group. Theorem D is now a
consequence of the following theorem.
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Theorem 4.7. Let A, B, X and H be as above. Suppose that B is non-compact and |X| > 2. Then, B oAX H
belongs to class S if and only if B is amenable, the stabilizer StabH(x) of every point x ∈ X is amenable and
H belongs to class S.

Proof. If B oAX H belongs to class S, then the subgroups H and B ×B do. Hence, B must be amenable. For
every point x0 ∈ X the subgroup B × StabH(x0) belongs to class S and since B is non-compact, this implies
the amenability of StabH(x0).

Conversely, suppose that H belongs to class S and that B and all stabilizers StabH(x) are amenable.
Denote by X =

⋃
i∈I Xi the partition of X into the orbits of H y X and fix xi ∈ Xi for all i ∈ I. Write

Bi = BXi,A and Hi = StabH(xi).

Step 1. Step 1. Each B oAXi
H belongs to class S. Fix i ∈ I. To prove this step, we proceed along the lines of

[BO08, Corollary 15.3.6]. By Lemma 4.3 and Corollary 4.6, it suffices to prove the existence of a continuous
map ζi : Bi →M(H/Hi)

+ ∼= `1(Xi)
+ satisfying

lim
b→∞

∥∥h · ζi(b)− ζi(αh(b)
)∥∥

1

‖ζi(b)‖1
= 0 and lim

b→∞

‖ζi(aba′)− ζi(b)‖1
‖ζi(b)‖1

= 0 (4.6)

uniformly on compact sets for h ∈ H and a, a′ ∈ Bi.
By [Str74] every lcsc group G admits a continuous proper length function, i.e. a continuous proper function

` : G → R+ satisfying `(gh) 6 `(g) + `(h) and `(g) = `(g−1) for all g, h ∈ G. Fix such continuous, proper
length functions `B : B → R+ and `H : H → R+. Define the function

f : Xi → R+ : x 7→ inf
h∈H
hxi=x

`H(h).

Note that f is proper and that f(hx) 6 `H(h) + f(x) for x ∈ X and h ∈ H. Define

g : B → R+ : b 7→ inf
a,a′∈A

`B(aba′),

and note that g(bb′) 6 g(b) + g(b′) +N , where N = supa∈A `B(a).
Define ζi : Bi → `1(Xi)

+ by

ζi(b)(x) =

{
g
(
b(x)

)
+ f(x) if x ∈ suppA(b),

0 otherwise

for b ∈ Bi and x ∈ Xi.
We prove that ζi satisfies (4.6). Fix h ∈ H and a, a′, b ∈ Bi. Denote b′ = aba′, S = suppA b, S′ = suppA b

′

and T = suppA a ∪ suppA a
′. We have∥∥h · ζ(b)− ζ

(
αh(b)

)∥∥
1

=
∑
x∈hS

|f(h−1x)− f(x)| 6 |S| `H(h)

and

‖ζ(b′)− ζ(b)‖1 =
∑
x∈T

∣∣g(b′(x)
)
− g
(
b(x)

)∣∣+
∑

x∈T∩(S4S′)

f(x)

6
∑
x∈T

(
g
(
a′(x)

)
+ g
(
a(x)

)
+ 2N

)
+

∑
x∈T∩(S4S′)

f(x)

6 ‖ζ(a)‖1 + ‖ζ(a′)‖1 + 2N |T |.

So, it suffices to prove that

lim
b→∞

‖ζi(b)‖1 = +∞ and lim
b→∞

| suppA b|
‖ζi(b)‖1

= 0.
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To prove the first, suppose that ‖ζ(b)‖1 6 M for some M > 0. Then, f(x) 6 M and g
(
b(x)

)
6 M for

every x ∈ suppA(b). Hence, we have b ∈ C =
∏
x∈Xi

Cx, where Cx = {b ∈ B | g(b) 6M} for x ∈ F =
{x ∈ X | f(x) 6M} and Cx = A otherwise. Since F is finite and each Cx is compact, it follows that C is
compact.

Finally, to prove that | suppA b|/‖ζi(b)‖1 → 0 if b→∞, take b ∈ B such that | suppA b|/‖ζi(b)‖1 > δ for
some δ > 0. Denote D = {x ∈ Xi | f(x) 6 2/δ}. Then,

2

δ

(
| suppA b| − |D|

)
6

2

δ
| suppA b \D| 6 ‖ζi(b)‖1 6

1

δ
| suppA b|

and thus | suppA b| 6 2|D|. We get ‖ζi(b)‖1 6 2
δ |D|. But, by the previous, the set {b ∈ B | ‖ζ(b)‖1 6 2|D|/δ}

is compact and so is {b ∈ B | | suppA b|/‖ζi(b)‖1 > δ}.

Step 2. Step 2. Construction of maps ξi : Bi → Prob(H) satisfying (4.7) below. Fix i ∈ I, ε > 0 and a
compact K ⊆ H. In this step, we construct a Borel map ξi : Bi → Prob(H) such that∥∥ξi(αh(b)

)
− h · ξi(b)

∥∥ 6 ε and ξi(aba
′) = ξi(b) (4.7)

for all b ∈ Bi \AXi , all h ∈ K and all a, a′ ∈ AXi . Note that the difference with the previous step is that we
want the map ξi to satisfy (4.7) for all b ∈ Bi \AXi , instead of b ∈ Bi \L for L some (possibly large) compact
set.

Since Hi is amenable, the action H y H/Hi by left translation is amenable. Identifying Xi
∼= H/Hi and

using Proposition 2.5, we find a map µ : Xi → Prob(H) such that ‖h · µ(x)− µ(hx)‖ < ε for every h ∈ K
and every x ∈ Xi. Now, define ξi : Bi → Prob(H) by

ξi(b) =
1

| suppA b|
∑

x∈suppA b

µ(x)

for b ∈ Bi \AXi . For b ∈ Bi, set ξi(b) = δe. One easily checks that ξi satisfies (4.7).

Step 3. Step 3. B oAX H is bi-exact. Fix ε > 0 and take compact sets C ⊆ BX,A and K ⊆ H. By
Lemma 3.2 and Corollary 4.6, it suffices to prove that there exists a compact set D ⊆ BX,A and a Borel map
ζ : BX,A → Prob(H) such that∥∥h · ζ(b)− ζ

(
αh(b)

)∥∥ 6 ε and ‖ζ(aba′)− ζ(b)‖ 6 ε (4.8)

for all h ∈ K, a, a′ ∈ C and b ∈ BX,A \D.
Take compact sets Ci ⊆ Bi and a finite subset I0 ⊆ I such that C ⊆

∏
i∈I Ci and such that Ci = AXi for

all i ∈ I \ I0. For i ∈ I0, the fact that B oAXi
H belongs to class S, allows us to take a compact set Di ⊆ Bi and

a Borel map ζi : Bi → Prob(H) such that
∥∥h · ζi(b)− ζi(αh(b)

)∥∥ 6 ε and ‖ζi(aba′)− ζi(b)‖ 6 ε for h ∈ K,
a, a′ ∈ Ci and b ∈ Bi \ Di. By enlarging Di, we can assume that AXi ⊆ Di and C−1i AXiC−1i ⊆ Di. For
i ∈ I \ I0, we take for ζi : Bi → Prob(H) the map ξi from step 2 and set Di = AXi .

For b ∈ BX,A and i ∈ I, we denote by bi ∈ BXi,A the restriction of b to Xi. We also denote Ib ={
i ∈ I

∣∣ bi /∈ AXi
}
. Define ζ : BX,A → Prob(H) by

ζi(b) =
1

|Ib|
∑
i∈Ib

ζi(bi)

for b ∈ BX,A \ AX and ζi(b) = δe for b ∈ AX . One easily checks that (4.8) holds for D =
∏
i∈I Di, since

Ib = Iaba′ for b ∈ BX,A \D and a, a′ ∈ C.

5 Class S is closed under measure equivalence
In this section, we prove Theorem E. As mentioned in the introduction, exactness is preserved under measure
equivalence. So, it suffices to prove that property (S) (i.e. the existence of a map η : G→ Prob(G) satisfying
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(1.1)) is a measure equivalence invariant. In order to prove that, we will use the characterization of measure
equivalence in terms of cross section equivalence relations from [KKR18, Theorem A] and introduce a notion
of property (S) for these relations.

Recall that a countable, Borel equivalence relation R on a standard probability space (X,µ) is an
equivalence relation on X such that R ⊆ X ×X is a Borel subset and such that all orbits are countable. We
say that R is non-singular for the measure µ if µ(E) = 0 implies that µ([E]R) = 0 for all measurable E ⊆ X.
Here, [E]R = {x ∈ X | ∃y ∈ E : x ∼R y}. We say that R is ergodic if E = [E]R implies that µ(E) = 0 or
µ(E) = 1. We denote R(2) = {(x, y, z) | x ∼R y ∼R z}.

A Borel subset W ⊆ R is called bounded if the number of elements in its sections is bounded, i.e. if there
exists a C > 0 such that

|xW| = | {y ∈ X | (x, y) ∈ W} | < C and |Wy| = | {x ∈ X | (x, y) ∈ W} | < C

for a.e. x, y ∈ X. We say that W is locally bounded if for every ε > 0, there exists a Borel subset E ⊆ X with
µ(X \ E) 6 ε such that W ∩ (E × E) is bounded.

The full group [R] is the group of all Borel automorphisms ϕ : X → X, identified up to almost everywhere
equality, such that graphϕ = {(ϕ(x), x)}x∈X is contained in R. The full pseudo group [[R]] is the set of all
partial Borel isomorphisms ϕ : A→ B for Borel sets A,B ⊆ X whose graph is contained in R. Again, these
partial isomorphisms are identified up to almost everywhere equality. Every bounded Borel subset W ⊆ R can
be written as a finite union of graphs of elements in [[R]]. For more information about countable equivalence
relations, see for instance [FM77].

Let G be a lcsc group and Gy (X,µ) a probability measure preserving (pmp) action. We say that the
action Gy (X,µ) is essentially free if the set

{x ∈ X | ∃g ∈ G : gx = x}

is a null set. Note that this set is Borel by [MRV13, Lemma 10].
The notion of a cross section equivalence relation was originally introduced by Forrest in [For74]. A more

recent, self-contained treatment for unimodular groups can be found in [KPV15]. Given an essentially free
pmp action Gy (X,µ) on a standard probability space, a cross section is a Borel subset X1 ⊆ X with the
following two properties.

(i) There exists a neighbourhood U ⊆ G of identity such that the action map U ×X1 → X : (g, x) 7→
gx is injective.

(ii) The subset G ·X1 ⊆ X is co-null.

By [For74, Theorem 4.2] such a cross section always exists. Note that the first condition implies that the
action map θ : G ×X1 → X : (g, x) 7→ gx is countable-to-one and hence maps Borel sets to Borel sets. In
particular, the set G ·X1 in the second condition is Borel.

By removing a G-invariant null set from X, we can always assume that G ·X1 = X and that Gy X is
really free. Using [Kec95, 18.10 and 18.14], we can take Borel maps π : X → X1 and γ : X → G such that
x = γ(x)·π(x) for all x ∈ X. Similarly, denoting byRG the image of the map G×X → X×X : (g, x) 7→ (gx, x),
we can take a Borel map ω : RG → G satisfying ω(x, y)y = x for y ∈ G · x. Moreover, ω is a 1-cocycle in the
sense that ω(x, y)ω(y, z) = ω(x, z) for all y, z ∈ G · x.

The cross section equivalence relation associated to X1 is defined by

R = RG ∩ (X1 ×X1) = {(x, y) ∈ X1 ×X1 | y ∈ G ·X1} .

The measurable space X1 admits a unique probability measure µ1 and a unique number 0 < covol(X1) < +∞
such that

(λG ⊗ µ1)(W) = covol(X1)

∫
X

|W ∩ θ−1(x)|dµ(x) (5.1)

for all measurable W ⊆ G×X1. The relation R is a non-singular, countable, Borel equivalence relation for
this probability measure µ1.

We will use the following easy lemma throughout the rest of this section.
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Lemma 5.1. Let G be a lcsc group and Gy (X,µ) an essentially free, pmp action. Let X1 ⊆ X be a cross
section and R the associated cross section equivalence relation.

(a) If K ⊆ G is compact, then the set W = {(x, y) ∈ R | ω(x, y) ∈ K} is a bounded subset of R.

(b) If W ⊆ R is a locally bounded set and ε > 0, then there exists a Borel subset E ⊆ X1 with
ν(E) < ε such that ω

(
W ∩ (E × E)

)
is relatively compact.

Proof. Statement (a) follows easily from the fact that there is a neighbourhood of the unit e ∈ G for which
the map U ×X1 → X : (g, x) 7→ gx is injective.

Since every bounded Borel subset can be written as a finite union of graphs of elements in [[R]], it suffices
to prove (b) for graph(ϕ) with ϕ ∈ [[R]], but this can be done easily by taking E =

{
x ∈ X

∣∣ ω(α(x), x
)
∈ K

}
for K a compact set that is large enough.

We define property (S) on the level of non-singular, countable, Borel equivalence relations as follows.

Definition 5.2. Let R be a non-singular, countable, Borel equivalence relation on a standard measure space
(X,µ). We say that R has property (S) if there exists a Borel map η assigning to all (x, y) ∈ R a probability
measure on the orbit of y such that for all ε > 0 and ϕ,ψ ∈ [R], the set{

(x, y) ∈ R
∣∣ ∥∥η(ϕ(x), ψ(y)

)
− η(x, y)

∥∥
1
> ε
}

(5.2)

is locally bounded.

Remark 5.3. To be entirely rigorous, we can view η as a Borel map R(2) → [0, 1] such that
∑
z∈X
z∼x

η(x, y, z) = 1

for a.e. (x, y) ∈ R.
We prove that the above notion of property (S) is compatible with taking cross section equivalence

relations.

Proposition 5.4. Let G be a lcsc group and Gy (X,µ) an essentially free, ergodic, pmp action. Let X1 ⊆ X
be a cross section and R the associated cross section equivalence relation. Then, G has property (S) if and
only if R has property (S).

Proof. As before, we fix Borel maps γ : X → G and π : X → X1 such that x = γ(x) · π(x) for a.e. x ∈ X.
First, assume that G has property (S). Let η : G→ Prob(G) be a map satisfying (1.1). Define for each x ∈ X
a map

πx : G→ X1 : g 7→ π(g−1x).

Note that πx is a Borel map from G to the R-orbit of π(x). We define the map η′ as in Definition 5.2 by

η′(x, y) = (πx)∗η
(
ω(x, y)

)
for (x, y) ∈ R. Note that indeed every η′(x, y) is a probability measure on the R-orbit of x. To prove that η′
satisfies (5.2), fix ε, δ > 0 and ϕ,ψ ∈ [R]. It suffices to find a Borel set E ⊂ X1 with µ1(X1 \ E) < δ such
that the set {

(x, y) ∈ R ∩ (E × E)
∣∣ ∥∥η′(ϕ(x), ψ(y)

)
− η′(x, y)

∥∥
1
> ε
}

(5.3)

is bounded.
By Lemma 5.1, we find a compact set K ⊆ G and a measurable E ⊆ X1 with µ1(X1 \ E) < δ

such that ω
(
ϕ(x), x

)
∈ K and ω

(
y, ψ(y)

)
∈ K for all x, y ∈ E. Take a compact set L ⊆ G such that

‖η(gkh)− g · η(k)‖1 < ε for all g, h ∈ K and all k ∈ G \ L. We claim that∥∥η′(ϕ(x), ψ(y)
)
− η′(x, y)

∥∥
1
< ε (5.4)

whenever (x, y) ∈ R∩(E×E) and ω(x, y) ∈ G\L. Assuming the claim is true, the set (5.3) is contained in the
set of all (x, y) ∈ R with ω(x, y) ∈ L which is bounded by Lemma 5.1. To prove (5.4), fix (x, y) ∈ R∩ (E×E)
with ω(x, y) ∈ G \ L. We have∥∥η′(ϕ(x), ϕ(y)

)
− η′(x, y)

∥∥
1

=
∥∥(πϕ(x))∗η

(
ω(ϕ(x), ψ(y))

)
− (πx)∗η

(
ω(x, y)

)∥∥
1

=
∥∥η(ω(ϕ(x), ψ(y))

)
− ω

(
ϕ(x), x

)
· η
(
ω(x, y)

)∥∥
1
< ε,
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where we used that πx(g) = πϕ(x)
(
ω(ϕ(x), x)g

)
and the cocycle identity for ω. Hence, (5.4) is proved.

Conversely, assume that R has property (S) and let η be a map as in the definition. Choose an arbitrary
ξ ∈ Prob(G) and define

η′ : G→ Prob(G) : g 7→
∫
X

( ∑
z∈X1

z∼π(x)

η
(
π(gx), π(x), z

)
ω(gx, z) · ξ

)
dµ(x).

We prove that η′ satisfies (1.1). Fix a compact, symmetric neighbourhood K of the unit e in G and an
ε > 0. Take a compact, symmetric subset L ⊆ G such that F = γ−1(L) satisfies µ(F ) > 1 − ε. Denote
κ = λG(L)/ covol(X1). By Lemma 5.1, the set W = {(x, y) ∈ R | ω(x, y) ∈ LKL} is bounded Borel. Writing
W as a union of finitely many elements of [[R]] and using (5.2), we see that the set

V = {(x, y) ∈ R | ∃(x, x′), (y, y′) ∈ W, ‖η(x′, y′)− η(x, y)‖1 > ε}

is locally bounded. Denoting δ = ε/κ and using Lemma 5.1, we find a compact set C ⊆ G and a measurable
E ⊆ X1 with µ1(E) > 1 − δ such that ω

(
V ∩ (E × E)

)
⊆ C. We conclude that ‖η(x′, y′)− η(x, y)‖1 < ε

whenever (x, y) ∈ R ∩ (E × E) with (x, x′) ∈ W, (y, y′) ∈ W and ω(x, y) ∈ G \ C.
Denote D = LCL. We conclude the proof by proving that

‖η′(gkh)− g · η′(k)‖ < 4κδ + 9ε = 13ε (5.5)

for all g, h ∈ K and k ∈ G \D. So, fix g, h ∈ K and k ∈ G \D. Applying the change of variables x 7→ h−1x
and using that ω(gkx, z) = gω(kx, z), a straightforward calculation yields

‖η′(gkh)− g · η′(k)‖ 6
∫
X

∥∥η(π(gkx), π(h−1x)
)
− η
(
π(kx), π(x)

)∥∥
1

dµ(x).

Since g, h−1 ∈ K, we have that
(
π(gkx), π(kx)

)
∈ W and

(
π(h−1x), π(x)

)
∈ W whenever x ∈ X is such that

gkx, h−1x, kx, x ∈ F = γ−1(L). Moreover, for such an x we also have ω
(
π(kx), π(x)

)
∈ LkL ⊆ G \ C. Hence,∥∥η(π(gkx), π(h−1x)

)
− η
(
π(kx), π(x)

)∥∥
1
< ε (5.6)

whenever gkx, h−1x, kx, x ∈ F , π(x) ∈ E and π(kx) ∈ E.
Since µ(F ) > 1− ε, we can find a measurable set F ′ with µ(F ′) > 1− 4ε such that gkx, h−1x, kx, x ∈ F

for every x ∈ F ′. Moreover, the map θ : G×X1 → X is injective on the image A of the map x 7→
(
γ(x), π(x)

)
.

Hence by (5.1), we have that covol(X1) µ
(
θ(U)

)
= (λG ⊗ µ1)(U) for all U ⊆ A. It follows that for measurable

S ⊆ X1, we have that

µ
(
π−1(S) ∩ F

)
= covol(X1)−1(λG × µ1)

(
A ∩ (L× S)

)
6

λG(L)

covol(X1)
µ1(S) = κµ1(S).

Applying this to π−1(X1 \ E) ∩ F and using the definition F ′ above, we conclude that (5.6) holds on a set
whose complement has at most measure 4ε+ 2κδ and hence that (5.5) holds.

The proof of Theorem E is now easy.

Proof of Theorem E. As mentioned in the introduction exactness is a measure equivalence invariant by [DL15,
Corollary 2.9] and [DL14, Theorem 0.1 (6)].

The characterization of measure equivalence in terms of stable isomorphism of cross section equivalence
relations (see [KKR18, Theorem A] and [KKR17, Theorem A]) together with Proposition 5.4 yields that
property (S) is preserved under measure equivalence.
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6 Class S and unique prime factorization
In [HI17], Houdayer and Isono introduce the following property.

Definition 6.1. Let (M,H, J,P) be a von Neumann algebra in standard form. We say that M satisfies the
strong condition (AO) if there exist C∗-algebras A ⊆M and C ⊆ B(H) such that

• A is exact and σ-weakly dense in M ,

• C is nuclear and contains A,

• all commutators [c, JaJ ] for c ∈ C and a ∈ A belong to the compact operators K(H).

Note that the definition in [HI17, Definition 2.6] requires A and C to be unital. However, by [BO08,
Proposition 2.2.1 and Proposition 2.2.4] this is not essential.

In [HI17, Theorems B], Houdayer and Isono provide a unique prime factorization theorem for non-amenable
factors satisfying strong condition (AO). A slightly more general version, removing the condition that the
unknown tensor product factors Ni have a state with large centralizers, was later proved by Ando, Haagerup,
Houdayer, and Marrakchi in [AHHM18, Application 4]. Theorem F now follows immediately by combining
these theorems with the following result.

Proposition 6.2. Let G be a lcsc group in class S, then its group von Neumann algebra L(G) satisfies strong
condition (AO).

Proof. Recall that L(G) is in standard form on L2(G), where the anti-unitary operator J is given by
(Jξ)(t) = δG(t)−1/2ξ(t−1). Here, where δG denotes the modular function of G. Straightforward calculation
yields (

Jλ(f)Jξ
)
(s) =

∫
G

f(t)δG(t)1/2ξ(st) dt.

Let A = C∗r(G) be the reduced group C∗-algebra of G. Then, obviously A is exact and σ-weakly dense
in L(G). By Theorem B and [Ana02, Theorem 5.3], the algebra C(huG) oG is nuclear. Now, the inclusion
C(huG) ⊆ Cub (G) ↪→ B(L2(G)) together with the unitary representation g 7→ λg induces a ∗-morphism
π : C(huG) o G → B(L2(G)). Let C be the image of this ∗-morphism. The algebra C is nuclear as a
quotient of a nuclear C∗-algebra, and obviously contains A. Note that Cc

(
G,C(huG)

)
is a dense subalgebra

in C(huG) oG. Identifying an element h ∈ Cc
(
G,C(huG)

)
⊆ C(huG) oG with a function on G×G that is

compactly supported in the first component, we get that the action π(h) on a ξ ∈ L2(G) is given by

(
π(h)ξ

)
(s) =

∫
G

h(t, s)ξ(t−1s) dt.

Denote by C0 the image of Cc
(
G,C(huG)

)
under π.

For f ∈ Cc(G) and π(h) ∈ C0, we prove that T = [π(h), Jλ(f)J ] ∈ K(L2(G)). A straightforward
calculation yields that for ξ ∈ L2(G) and s ∈ G, we have

(Tξ)(s) =

∫
G

∫
G

(
h(t, s)− h(t, su)

)
f(u)δG(u)1/2ξ(t−1su) dtdu

=

∫
G

k(s, u)ξ(u) du,

where
k(s, u) =

∫
G

(
h(t, s)− h(t, tu)

)
f(s−1tu)δG(s−1tu)1/2 dt.

Let (Kn)n be an increasing sequence of compact subsets of G such that G =
⋃
nKn. Set kn(s, u) =

χKn(s)k(s, u) and define the operators Tn ∈ B(L2(G)) by

(Tnξ)(s) =

∫
G

kn(s, u)ξ(u) du.
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Note that since f ∈ Cc(G) and h is compactly supported in the first component, we have that each
kn ∈ L2(G×G) and hence that Tn is compact. Moreover, Tn → T in norm. Indeed, if L ⊆ G is a compact
subset containing the support of f and of (the first component of) h, then

‖Tξ − Tnξ‖2 6 sup
s∈G\Kn

sup
t,u∈L

|h(t, s)− h(t, su)|2 µ(L)2 ‖Jλ(|f |)J |ξ|‖22

= sup
s∈G\Kn

sup
t,u∈L

|h(t, s)− h(t, su)|2 µ(L)2 ‖f‖21 ‖ξ‖
2
2

and lim sups→∞ |h(t, s)− h(t, su)|2 = 0 uniformly on compact sets for t, u ∈ G. We conclude that T itself is
compact.
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